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ON THE CALCULATION OF THE BARODIFFUSION CONSTANTS OF BINARY 

GAS MIXTURES (McCO~MACK ~DEL) 

V. G. Leitsina, N. V. Pavlyukevich, 
and G. I. Rudin 

UDC 533.6.011.8 

An expression for the barodiffusion constant is obtained on the basis of the 
McCormack model equations in the approximation of a continuous medium. 

The barodiffusion constant is an important physical quantity characterizing such phenom- 
ena as diffusiophoresis, separation of a mixture during flow, etc. Expressions for it are 
obtained in a number of reports using the Boltzmann equation [1,2] or model kinetic equations 
in the Hamel form [3,4]. When the values of the barodiffusion constant obtained from the 
solution of equations in the Hamel form are compared with experimental data [5,6] it turns 
out that they differ rather considerably from each other for a number of binary mixtures. 
The most important disagreement is observed for binary mixtures with molecules of markedly 
differing masses (Ar--H2, Ar--He, Ar--Ne, etc.). Evidently, the reason for the noncorrespon- 
dence between the theoretical results and experimental data consists in the fact that the 
Hamel model does not describe sufficiently correctly the flow of a binary mixture in the mode 
of a continuous medium; in particular, an adequate description of the diffusion and viscosity 
of the mixture cannot be provided simultaneously within its framework. Thus, the necessity 
arises of using more refined models of a binary gas mixture. Such models include McCormackTs 
model [7]. It is based on matching the moments of order N from exact and model collision 
integrals and provides a correct description of the flow of a mixture in the mode of a con- 
tinuous medium. In [8] the method of half-space moments is used to solve model equations in 
the McCormack form with N = 2. Usually when this method is used difficulties develop in 
estimating the accuracy of the results obtained. Since even the second approximation of the 
method of half-space moments leads to very cumbersome expressions, it is practically impos- 
sible to find the third approximation, which would permit an estimation of the rate of con- 
vergence of the results obtained to numerical results. In the present report the method of 
asymptotic joining, which is free of the defects inherent to the method of half-space moments, 
is used to solve model equations in the HcCormack form. 
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Let us consider the slow flow of a binary gas mixture in a cylindrical channel of 
radius R in the approximation of a continuous medium. A density gradient dni/dz = niK i of a 
component exists in the direction of the z axis, which coincides with the axis of the chan- 
nel; the temperature T of the mixture is assumed to be constant. Then we have the following 
equation for the difference between the velocities of the components averaged over a cross 
section of the channel: [ pip~ Olnp J ( v~ ) - -  < v~ > = - - D  f O (p~/p) q_ a - -  . (1) 

p~p~ Oz p~ Oz 

Here D is the coefficient of interdiffusion; pi, partial pressure of component i; p, total 
pressure of the mixture; o, barodiffusion constant. Thus, to calculate ~ one must know the 
velocities of the components of the mixture. 

We represent the unknown distribution function of molecules of component i in the form 

f~ = ni (z) (hil~) al~ exp {--  hlu~ } (I q-- ~ ) ,  h i = mil2kT, 
where ~i ~ 1 .  

W i t h i n  t he  f r a m e w o r k  o f  the  McCormack model  ~i  s a t i s f i e s  t h e  f o l l o w i n g  l i n e a r i z e d  e q u a -  
t i o n  [7]: 

O@i Ocbi 
u~/q  + u~ ~ + u~ 0--y-- = - -  (v .  + w J) ~ + 

- k - 2 { ( Y u @ Y i , ) q i z - - [ q i ~ - - ( ~ i i ) ' / Z q , z ] v ' ] ' } C , ~ +  

P~ P~ 

•  t n , /  i, ] = 1, 2, i @ i ,  

I/2 
where c i = h i ui; qiz = h~/Zviz, dimensionless macroscopic velocity of component i; ~ixz, 

partial tensor of viscous stresses, while the expressions for Yii, Yij, and ~ij (k), which 
depend on the Chapman-Cowling integrals, are given in [7]. By definition, 

+~ 

q~z = qi = z~-3/2 J ci~ exp {--  c~ } ~idci ,  

+| 
2 Ilix ~ = IIi = 2p~z~ -3/~ ( c~xc~ exp {--  ci } tI) flci. 

w 

As a r e s u l t  o f  t h e  s o l u t i o n  (2) t h e  f o l l o w i n g  e q u a t i o n s  were  o b t a i n e d  in  [8] f o r  the  
velocities V i of the components and the tensor ~i of viscous stresses outside the Knudsen 

boundary layer : 

PiKi -k  1 0___ (rIi- 0 = ninj kT ( V j -  Vi), 
r Or nD 

II ~ II ~ O V ~ 
aii ~ -[- aij --- Yi --, y~ Or 

where 

P P P 

I t  i s  e a s y  to  show t h a t  t h e  s o l u t i o n  o f  t h i s  s y s t e m  o f  e q u a t i o n s  has  t h e  fo rm 

V i = A i ~ i  1 - -  R z q - B , + M , ,  

H, = 2y,Aia,  a j j - -  (YJYO a~ r 
auajj - -  a~jaj, R ~ 

Here 
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Ai = - -  (a~j~ji--auajj)(P~Ki-k PJKJ) R~; 
46iyiy~ ai 

(2) 

(3) 

(4) 

(5) 

(6) 



B~= D { [ a~ 1 (auay,--auajy)] 
5iyiy~kT" p~K~ g~ 5~g/ 

+p,K;[a~j  1 ]} - - -  2 (aua~--a~a~) ; 
Yj 6iYi 

( ) ( ) . ~i aji a ij Yi aii au , hl/2 1 

Y~ Y] ~ Y~ YJ Kn 

(in the mode of a continuous medium ~i § oo); Mi are integration constants, which are deter- 
mined through the solution (2) in the Knudsen boundary layer. 

Using (5) we can calculate the difference between the velocities of the components of a 
mixture outside the Knudsen layer: 

V~--V~ = BI--B=+ M~--M~-- 

Keeping in mind that 

D Ki ai, ~ ) -5 K~ + M~ 3/I.. (7) 

D(K~--KJ =--D 
pZ 0 (p~/p) 

p~po_ Oz ' 
Eq. (7) can be written in the form 

p2 O(pi /p)  e - - 1  1 Op 4 - M i - - M ~ ,  V~ --  V., = --  D -+- D . . . .  (8) 
ptp~. Oz (1 +eg~/YjY2 P Oz 

where 

ai.,.g2- a~2Yt 
ap.g~ - -  ailY,2 

Then we obtain the expressions for the velocities of the components of the mixture and the 
partial tensor of viscous stresses in the Knudsen boundary layer. We assume that the reflec- 
tion of gas molecules from the channel wall is diffusional. Multiplying both sides of (2) 
successively by Ciz exp {--c~} and CizCix exp {--c.~} and integrating over ci and along the 

characteristic curve s, we obtain the system of integral equations 

v , = - -  To(=is ) 2 1--  vi(x', y ' ) +  
2a y~ 

0 0 

+ 2  vj(x',  g') - -  T~(ais) + ~ To(~is) "< 

2 
x ~'[~~ (v~(x'. y')--v~(x', y'))+ 7 7 T  T~(a~s)cos0 • 

?i hi 

,fP - , } ?  + ~$~ n~ (x', V) ,Jl ~ n~(x', VI K_____~ x To (~s)  dsdO , 
?i Pi ?~ PJ . 2~h] /2  . . 

0 0 

II' -- ~ S f rc . 1--  % X 
0 0 

W" 
x v~ (x', y') + vj (x', 

Vi 

+ @ T, (o~s)] cos0[v~(x', g ' ) - -v j (x '  

[ (  - -  .) "'I' ~,(x' ,  ~')]} xcos~o 1 -  "[?~ "~?+'}P~ n~(x', y') + 
?i P~ Yi PJ 

y')]--h~/2 [T3(o~s)@ 

(2) 

, Y')l ~i-L-i q- 2T2(~xzs)• 
"h 

2~ 

dsdO g i  

0 0 

Tl (o%s) cos OdsdO. (9) 
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Here Yi = Yii + Yij; x' = r + s.cos 0; y' = s-sin 0; b = (I/R)[~ cos 0 + (R ~ -- r ~ sin~0)i/~] 
is the length of the segment of the characterist ic  curve from the channel wall to the point 
r .  

We use the method of asymptotic joining [9, I0] to solve (9) in the Knudsen boundary 
layer. We introduce the new variables Hi = ~i[l -- (r/R)], while we represent the veloci- 
ties of the components of the mixture and the tensor of viscous stresses in the form 

vi = V~ + 2AiF~ ('q~), IIi= I-Is + 2A~h] / ~  (~), 
where F i and ~i are correction functions which possess the following properties: 

/7'2 F ~ m lira Ni i(Hi) 0, lira N,~i0h)=0, m>0. 

With allowance for (5), (6), and (I0), Eqs. (9) take the form 

~/~FiOh ) g~ "~i(aH--yja~j/yz) Tt(rh) Mz To01/) Mz--M~ X 
pi (aiia z -- ai~a ~i) 2Ai 2Ai 

[ "(])"ij ----~5 v/~ ) /2 ~/(~) ( /9 1 44 )]~_( v[])--5 "(~) i ' - ~  "ii 
• ( R ~ -  To Oh)) -1- . . . . .  x~ T~ Oh)-- __  To (~li) 1 

?i ?i 2 , ?~ / X 

i 5 v[f) • F, (n~)7'-, (In,- 11;I)dn~ + r v}})--~- X 
~ J  ?i 

0 

0 
v~ . 

i sign Oh - -  ~1/) To ( I n z -  q,"l) ~ (n;) d,l; --  
0 

(1o) 

(11) 

?i 
0 

nl/lTi (~i) -- 2gy "fs(az--gjaijlg~) 
p~ (a~sajj -- a~jaj~) 

5 

Ms - -  Mj w~]) - -  -4- Tt 0]i) q- 
As ?s 

aj -~ sign(q~--~]i)To(l~h--~'lil)tlr~ ~ *1[ d,{, 

1 Mi 
R ~ T~ Oh) + ~ T, (qi) -- 

v[~)W (T30h) + 2T, (~)) ] - -  

2( 5 ~#, .4]) - - : f  
, ?s 

.)iFf(TI/)sign(~h--~l;)To(lq~--~l;Dd~l;-- 
0 

- - 2  a_~. 
ft j ?s 

5 u 

0 

v}~ ) i[F~ (N,')_ _=i Fj (a~ I{)] [T2 (INi- ~I; l)+lT0(Ni--l]; i)] dR;+ + y- .  ~j 
0 

?i . czi \--~ ) . W: n/ T_, (In/--  ~l;l)d~l;. (12) 
0 0 
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TABLE I. Values of Barodiffusion Constant ~ for Dif- 
ferent Binary Mixtures 

M i x t u r e  He--N~ He--At I !,--Ar N,--O, 

I 
Hamel model [3, 5] I 0,59 
McCormack model(15) 0,79 
Experimeatal o t 0,80 [6] 

0,55 
0,97 

1,04 [5] 

0,94 
1,33 

1,36 [51 

0,06 
0,09 

0, l0 [6] 

Terms of order l/ai are omitted in writing (12). Taking (1!) into account, in Eqs. (12) one 
must set M i = Mj, while the expression for the difference between the velocities of the com- 
ponents of the mixture averaged over the channel cross section are written in the form 

R 

( V i ) - - ( w  \ = R ~ V I - - V 2 + 2 A i  F i ( ~ ] i ) - -  a~ 

0 

Using simple transformations it is easy to show that 

Ai _ 1 Dp ai2a2i -- aria22 
a i  2 a 2 14 )  

61YiY271 

With allowance for (1), (8), (13), and (14) the expression for the barodiffusion constant 
takes the form 

a : (1 + eyvly2) Y2 iYiY2"~I \ 0:2 ] 
0 

The f u n c t i o n s  F l ( x )  and  F z ( x ) ,  w h i c h  a r e  t h e  s o l u t i o n  o f  t h e  s y s t e m  o f  e q u a t i o n s  ( 1 2 ) ,  
are found by the method of moments as in [9]. In Table I we present values of ~ for several 
binary mixtures (Yl = Y2 = 0.5) obtained through the solution of model equations in the Mc- 
Cormack (15) and Hamel [5] forms, as well as experimental data. As follows from Table I, the 
results of a calculation by (15) and the experimental data are in good agreement.. 

Gas mixtures having small relative differences between the masses and collision cross 
sections of the component molecules are of special practical interest" For the model of 
molecules as solid spheres the expression for ~ can be represented in the form 

m= - -  rni & - -  dt 
o = a  - - - b  " 

tn, + m 2 i di + d.~ 

w h e r e  d i i s  t h e  e f f e c t i v e  d i a m e t e r  o f  a m o l e c u l e  o f  c o m p o n e n t  i .  A c a l c u l a t i o n  b y  Eq .  ( 15 )  
l e a d s  t o  t h e  v a l u e  o f  c~ = 1 . 0 5  and  b = 0 . 8 4 .  T h e s e  v a l u e s  a r e  c l o s e  t o  t h e  c o r r e s p o n d i n g  
r e s u l t s  o b t a i n e d  i n  [8]  u s i n g  t h e  s e c o n d - o r d e r  McCormaek m o d e l .  

NOTATION 

k, Boltzmann constant; Kn, Knudsen number; Tn(y) = 
0 

function. 

x n exp (--x 2 -- y/x}dx, special 
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FRONTAL ISOTHERMAL SORPTION DYNA~ICS FOR ISOTHERM OF NONSIMPLE 

FO~M IN TIM PRESENCE OF CO}~LEX FO~TION IN THE MOVING PHASE 

A. I. Kalinichev UDC 541.183 

Approximate analytic solutions of the equations of nonequilibrium sorption dy- 
namics are obtained for convex--concave and concave-convex isotherms, taking 
into account the formation of nonsorbent complexes of the material in the 
mobile phase. 

The isothermal sorption dynamics of a material in a porous undeformed medium with the 
formation of a nonsorbent complex of the material with concentration cc, is described by the 
material balance equation [l] 

Oa Oc Oc c a (c + Co) = D 82 (c + q~) ( ] ) 
+ + 7 [  + u ax ax2 

and equa t ions  exp re s s ing  the r e l a t i o n  between the c o n c e n t r a t i o n s  a--c and cc--c. In the case 
of  nonequ i l i b r i um dynamics,  the c o n c e n t r a t i o n  r e l a t i o n  a -c  i s  s p e c i f i e d  by the k i n e t i c  equa- 
t i o n ,  taken here  in  the form of  the  equa t ion  of i n t r a d i f f u s i o n a l  k i n e t i c s ,  where the non- 
e q u i l i b r i u m  na tu r e  of  the  s o r p t i o n  process  i s  expressed  in terms of T [2] 

a = f (c ) - - '~  df  ac 
dc at (2) 

An equation of this form is used to solve a number of nonlinear problems of sorption dynam- 
ics [3-5]. 

If the rate of complex formation is large, then cc =~(c), where the function ~(c) may 
be determined as the complex-formation isotherm. The initial and boundary conditions of the 
equations of frontal sorption dynamics for a semiinfinite column (0 ~x < =) take the form 

c(O, t ) =  1; co(O, t )=~(1) ;  c(x,  O)=~:(x,  O ) = c ( ~ ,  t ) = q : ( ~ ,  t )=O.  
(3) 

For concave and convex isotherms f(c), ~(c), use of the integral-relation method leads 
to an approximate solution [6] describing the sorption front, and conditions of sharpening 
and hollowing out of the front as a function of the ratio of curvature parameters of the 
isotherm are introduced. In the case of equilibrium dynamics, i.e., a = f(c), using the 
characteristic equation corresponding to Eq. (l) with D = 0 

(dx  = _ , u d f f, (c) 
dt J c 1-}-dr~de ' dC 1H- ~' (c) 

f (c) = f (c (c)), (4)  

it is simple to show that when d=f/dC = < 0 (i.e., f(C) is convex) the front is stationary, 
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